Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37110963

RESUMO

Graphene-based polymer composites are innovative materials which have recently found wide application in many industrial sectors thanks to the combination of their enhanced properties. The production of such materials at the nanoscale and their handling in combination with other materials introduce growing concerns regarding workers' exposure to nano-sized materials. The present study aims to evaluate the nanomaterials emissions during the work phases required to produce an innovative graphene-based polymer coating made of a water-based polyurethane paint filled with graphene nanoplatelets (GNPs) and deposited via the spray casting technique. For this purpose, a multi-metric exposure measurement strategy was adopted in accordance with the harmonized tiered approach published by the Organization for Economic Co-operation and Development (OECD). As a result, potential GNPs release has been indicated near the operator in a restricted area not involving other workers. The ventilated hood inside the production laboratory guarantees a rapid reduction of particle number concentration levels, limiting the exposure time. Such findings allowed us to identify the work phases of the production process with a high risk of exposure by inhalation to GNPs and to define proper risk mitigation strategies.

2.
Sensors (Basel) ; 22(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36366170

RESUMO

Within the paradigm of smart mobility, the development of innovative materials aimed at improving resilience against structural failure in lightweight vehicles and electromagnetic interferences (EMI) due to wireless communications in guidance systems is of crucial relevance to improve safety, sustainability, and reliability in both aeronautical and automotive applications. In particular, the integration of intelligent structural health monitoring and electromagnetic (EM) shielding systems with radio frequency absorbing properties into a polymer composite laminate is still a challenge. In this paper, we present an innovative system consisting of a multi-layered thin panel which integrates nanostructured coatings to combine EM disturbance suppression and low-energy impact monitoring ability. Specifically, it is composed of a stack of dielectric and conductive layers constituting the sensing and EM-absorbing laminate (SEAL). The conductive layers are made of a polyurethane paint filled with graphene nanoplatelets (GNPs) at different concentrations to tailor the effective electrical conductivity and the functionality of the material. Basically, the panel includes a piezoresistive grid, obtained by selectively spraying onto mylar a low-conductive paint with 4.5 wt.% of GNPs and an EM-absorbing lossy sheet made of the same polyurethane paint but properly modified with a higher weight fraction (8 wt.%) of graphene. The responses of the grid's strain sensors were analyzed through quasi-static mechanical bending tests, whereas the absorbing properties were evaluated through free-space and waveguide-based measurement techniques in the X, Ku, K, and Ka bands. The experimental results were also validated by numerical simulations.

3.
Nanomaterials (Basel) ; 10(8)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756523

RESUMO

Widespread production and use of engineered nanomaterials in industrial and research settings raise concerns about their health impact in the workplace. In the last years, graphene-based nanomaterials have gained particular interest in many application fields. Among them, graphene nanoplatelets (GNPs) showed superior electrical, optical and thermal properties, low-cost and availability. Few and conflicting results have been reported about toxicity and potential effects on workers' health, during the production and handling of these nanostructures. Due to this lack of knowledge, systematic approaches are needed to assess risks and quantify workers' exposure to GNPs. This work applies a multi-metric approach to assess workers' exposure during the production of GNPs, based on the Organization for Economic Cooperation and Development (OECD) methodology by integrating real-time measurements and personal sampling. In particular, we analyzed the particle number concentration, the average diameter and the lung deposited surface area of airborne nanoparticles during the production process conducted by thermal exfoliation in two different ways, compared to the background. These results have been integrated by electron microscopic and spectroscopic analysis on the filters sampled by personal impactors. The study identifies the process phases potentially at risk for workers and reports quantitative information about the parameters that may influence the exposure in order to propose recommendations for a safer design of GNPs production process.

4.
Sensors (Basel) ; 20(16)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784596

RESUMO

The high demand for multifunctional devices for smart clothing applications, human motion detection, soft robotics, and artificial electronic skins has encouraged researchers to develop new high-performance flexible sensors. In this work, we fabricated and tested new 3D squeezable Ecoflex® open cell foams loaded with different concentrations of graphene nanoplatelets (GNPs) in order to obtain lightweight, soft, and cost-effective piezoresistive sensors with high sensitivity in a low-pressure regime. We analyzed the morphology of the produced materials and characterized both the mechanical and piezoresistive response of samples through quasi-static cyclic compression tests. Results indicated that sensors infiltrated with 1 mg of ethanol/GNP solution with a GNP concentration of 3 mg/mL were more sensitive and stable compared to those infiltrated with the same amount of ethanol/GNP solution but with a lower GNP concentration. The electromechanical response of the sensors showed a negative piezoresistive behavior up to ~10 kPa and an opposite trend for the 10-40 kPa range. The sensors were particularly sensitive at very low deformations, thus obtaining a maximum sensitivity of 0.28 kPa-1 for pressures lower than 10 kPa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...